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We present a study of a large pool of globally coupled relaxation oscillators. The reaction of the pool
to the presence of a modulating external field is discussed. The coupling is assumed homogeneous and
linear. Randomly distributed internal frequencies introduce a disordering element that, due to the cou-
pling, can result in oscillator quiescence. Self-synchronization is shown to be absent in this system.
However, this is entirely due to the linear coupling. For identical oscillators the basic state is incoherent
and marginally stable in an extended region of parameter space. With modulation on the levels, the
average rotation number as function of the external frequency lies on a devil’s staircase, as for a single
oscillator. However, the locked regions shrink with increasing coupling. This has some important
consequences for the critical lines of the averaged system. In the case of modulation on the frequency
(no damping), the average rotation number is still independent of the external signal, as for a single oscil-
lator. The real surprise lies in the resulting distribution of individual frequencies or rotation numbers.
No matter how the external field is applied, this distribution is forced into a devil’s staircase exhibiting a
critical point, which in the case of modulation on the lower level is a transition from quasiperiodicity to
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chaos and otherwise to completeness.

PACS number(s): 05.40.+j, 05.70.Fh, 05.90.+m, 87.10.+e

I. INTRODUCTION

Recently collective phenomena in large pools of cou-
pled oscillators have attracted much attention [1-4].
One of the interesting features of such populations is the
possibility of spontaneous synchronization, which in na-
ture has been observed in a wide range of physical, chem-
ical, biological, and medical systems. Examples are
charge-density waves [5], oscillating chemical reactions
[6], fireflies flashing in unison [7,8], the human circadian
rhythm [9], and an audience applauding the prima baller-
ina. The analysis of these large systems with many de-
grees of freedom has involved elements from both statisti-
cal mechanics and nonlinear dynamics.

Self-synchronization of pools of oscillators has been a
subject for a great deal of research for quite a while. The
breakthrough was obtained by Winfree [10] who assumed
that the interaction between the pool members was weak
compared to the attraction of the individual oscillators to
their limit cycles, so that amplitude variations could be
neglected and only phase variations need to be considered
(the phase rotator model). The important result here was
that self-synchronization was a cooperative phenomenon,
analogous to a phase transition. However, this and most
of the following work relates to limit-cycle oscillators de-
scribed by ordinary differential equations. Recently, a
simple model for synchronous firing of relaxation oscilla-
tors has been investigated [11]. The model consists of a
pool of identical “integrate and fire” oscillators globally
coupled by the pulses they emit when they fire. When
one oscillator fires, the pulse pulls all the other oscillators
towards their firing level and if this is surpassed, they,
too, will fire. The main result given in this investigation
was that a state is obtained where the oscillators fire in
synchronism. The time for obtaining synchrony has been
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studied in a recent experiment on 15 pulse-coupled elec-
tronic relaxation oscillators with a triangular time devel-
opment [12].

We report a study of coupled relaxation oscillators
with random internal frequencies in the presence of an al-
ternating external field. For convenience the coupling is
chosen to be of infinite range and homogeneous. This
choice of global coupling may seem unrealistic but is
justified in its relative simplicity. It is often found that an
infinite-range model captures the essentials of more
refined models. However, a few physical systems de-
scribed well by infinite-range couplings do exist. As an
example, we mention an array of resistively shunted
Josephson junctions [13,14]. In fact, arrays of resistively
coupled high-current-density superconducting micro-
bridges in the flux flow regime (especially high-T,
bridges) and exposed to a microwave field can be modeled
by relaxation oscillators with a linear global coupling and
modulation on the current (corresponding to modulation
on the frequency in the present notation).

The present work differs from previous studies by not
only considering a pool of relaxation oscillators as in [15]
but also using an ever-present linear global coupling term
instead of pulse coupling. This kind of coupling may be
of importance for coupled electronic oscillators and for
earthquakes and swarm earthquakes. Also for many bio-
logical systems this kind of coupling may be present.
One conclusion we draw is that this type of interaction
does not allow for self-synchronization, although this is
entirely due to the linear coupling. A highly interesting
observation is the existence of stationary states that are
marginally stable in extended regions of phase space.
Furthermore, when the oscillators are nonidentical the
interaction may result in oscillator quiescence. When an
external modulating field is included synchronization to
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the field takes place in a way that always involves synch-
ronization of some subset of the individual oscillators but
not necessarily of the pool as a whole. Actually the aver-
age behavior of the pool may be completely unaffected by
the presence of an external field. The predictions of the
paper are at the moment being investigated in an experi-
ment on a pool of between 16 and 64 resistively coupled
electronic relaxation oscillators with instant reset and
modulation on either levels or frequency.

The paper is organized as follows. In Sec. II we set
forth the basic elements of the model. In Sec. III we
define some useful general quantities and lay the founda-
tion for the later stability analysis. The properties of the
systems without modulation are treated in Sec. IV (identi-
cal oscillators) and Sec. V (nonidentical oscillators). In
Sec. IV the analysis is extended to a repulsive interaction
and the effect of damping is considered. Section V is
mainly devoted to the question of oscillator quiescence.
The effect of modulation is discussed in Sec. VI (identical)
and Sec. VII (nonidentical). The main effort is to derive,
if possible, critical lines for the existence of phase lock to
the external field. Finally, we present our conclusions in
Sec. VIII. Some general remarks about the problems in-
volved in the implementation of numerical simulations
are presented in Appendix A, while Appendix B deals
with some preliminary results on the consequences of
nonlinear coupling.

II. THE MODEL

The individual oscillators are characterized by the re-
laxation of a “voltagelike” state variable with instant
reset to a lower level when a firing threshold is reached.
The investigation is limited to the case of identical levels
for all oscillators, while frequencies may vary. Denoting
the state variable of the ith oscillator in the pool by x; we
have

K N
X =w;,—I'x;+ A( +F2 x;—x;), i=1,...,N,
(1)
with the firing condition
x;(tT)=T,, for x,(¢)= Tyop - (2)

The number of oscillators N is assumed to be very large,
while the damping is assumed to be nonnegative. The
quantity w;, which is always assumed to be positive, is the
random intrinsic or natural frequency of the ith oscillator
when no damping is present, i.e., I'=0. Finally, K is the
coupling strength which too is assumed to be non-
negative in most of the paper. The external field A (¢)
has zero time average and is here assumed sinusoidal
(amplitude a) although other choices could be of interest.
The levels T, and T, denote, respectively, the top and
bottom thresholds which may be modulated by an exter-
nal signal similar to 4 (¢). Without loss of generality, we
can set the frequency of the external field to unity and
also assume (T,)=1 and (T, )»=0, where ( )
denotes time average.
Defining the oscillator

mean-field strength as

s=(1 /N)Z}":]xj, the equations of motion can be written
in the form

% =w;— (K +T)x;+Ks()+ A (1) . 3)

With the above definition one can equally well think of
the coupling as being between any two individual oscilla-
tors as between any oscillator and the mean field s. In
general this mean-field approach is not possible. Howev-
er, when the coupling is linear analytical progress is to
some extent possible which is the foremost reason for
choosing this kind of continuous coupling.

At first sight one might think that the attractive in-
teraction will lead to self-synchronization. However, this
does not take into account the effect of the abrupt firing
events. Just after some oscillator fires it will still attract
those close to firing but now with the effect of turning
them away from following its own example. In essence it
repels them from its own trajectory, creating momentari-
ly a repulsive interaction. The outcome is thus a result of
these two conflicting mechanisms.

III. GENERAL REMARKS

An important quantity in the following is the rotation
number defined for a single oscillator as the average num-
ber of firings per unit time. Thus R;=1/T;, where T is
the average time between firings for the ith oscillator.
When no external field is present the rotation number for
a single oscillator without damping becomes
R =1/T =w, where T is the period. The average rota-
tion number R for the pool is defined by

R——zR =(F(1), )

1—1

where NF (t)dt is the number of firings by members of the
pool in the time inverval [z,¢ +dt].

For the sake of later stability calculations, let us con-
sider two parallel oscillator trajectories displaced by an
infinitesimal distance §,. Referring to Fig. 1 let us as-
sume that the first trajectory hits the upper level at time
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FIG. 1. Construction for calculating the relative change

8,/8, in distance between two oscillator trajectories during a
firing event for use in stability calculations.
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t; and is reset to the lower level. From here it travels on
with slope 4,(¢;). The second trajectory travels on with
slope h,(¢;) from time ¢; to time ¢; + 8¢ at which time it is
reset to the lower level. Quite generally the distance §, at
time ¢; + 8¢ is related to 5, through

8 Ry (1) = Ty (;) (5)
81 hy(t)—Tp(t;)
The Lyapunov number is now defined as

- n Sz(t‘)\ll( —e) ©)
igoal(ti) ferTED

where W(z; ,—¢;) is the relative change in §, until the
next firing. Calculating the Lyapunov number thus in-
volves knowledge of the firing times ¢#; and the appropri-
ate slopes at the firing times. Evidently, calculation of the
Lyapunov number involves contributions from both the
continuous and the discontinuous (the firings) parts of the
trajectory quantifying the arguments of Sec. II.

From Eq. (3) we can determine the time derivative of s
by summing over i and dividing by the number of oscilla-
tors N. Defining the average frequency as
8=(1/N)3 N 0; we find

§=B—Ts+a sin(2mt)—[ Tyop (1) — Tooy (NIF (1), (T)

where the last term results from the firing action. Since s
is limited between T, and T\, taking the time average
results in

B—T(s) = ([Tyop(t) — Ty (DIF (1)) =0 . (8)

If the limiting levels are independent of time this equa-
tion simplifies into

o—I{(s)—(F(t))=0, 9)

where we have used the normalization for the levels. Us-
ing the definition given in Eq. (4) for the average rotation
number gives

R=a—-T(s) . (10)

Thus this simple result holds as shown for modulation
with zero time average on the natural frequency (a
nonzero time average will just produce an offset in @).
However, for modulation on the levels the argumentation
evidently breaks down.

Without modulation an obvious guess is that the stable
state for the pool of oscillators will be a stationary (in-
coherent) state with constant mean-field strength s. The
effect of this assumption is to shift the natural oscillatory
frequency and introduce an additional damping term.
Quite obviously the state has a uniform distribution of
firing times.

With the initial condition x;(¢ =0)=0 the solution for
is

X;

_ @;+Ks
%= g |
with the period 7; determined by the condition
x;(t=T;)=1:

1

1—exp[ —(K +T)t]}, (11)

1 K+r
iTTKHT M| o, +Ks 12
To obtain running solutions we must require

®; +Ks>K +T. To proceed further s has to be calculat-
ed self-consistently.

With modulation, but all oscillators assumed identical,
another obvious solution is the one where all the oscilla-
tors run in unison (are synchronized). In this case the
coupling term is identical zero and the behavior of s is
identical to that of a single oscillator which is known in
great detail (see, e.g., [16]). One interesting question is
whether self-synchronization can take place in the pool
without an external field present.

IV. IDENTICAL OSCILLATORS, NO MODULATION

Since we cannot solve the system of equations analyti-
cally in general without preknowledge of the solution for
s, we shall consent ourselves with discussing the above
special guesses for solutions. Since the numerical simula-
tions show the state having s constant to be the stable
state we shall treat this case first in Sec. IV A. Thereaf-
ter, we discuss the self-synchronized state in Sec. IV B,
before closing the section with a discussion of the effects
of a finite amount of damping.

A. The incoherent stationary state

We shall now treat the case with w; =w and no damp-
ing, i.e., ' =0. Furthermore, we assume s constant. The
resulting state is thus a stationary state with a time-
independent oscillator distribution with a uniform distri-
bution of firing times #;, i.e., the time development of any
oscillator can be written in the form x;= f (¢ —¢;).

Because of this the calculation of s can simply be per-
formed as the time integral of one oscillator over one
period. Using the results for x; and T; given in Eqgs. (11)
and (12) with the above assumptions we find

1 pT W 1
(x,-)———]:foxidt=7<-+s——T?, (13)
which, using the definition of s, results in T =@~ ! in
agreement with Eq. (10). Thus the frequency of the oscil-
lator is unchanged by the coupling although the trajecto-
ry has changed. The mean field s can now be found from
the equation for the period T:
1 w
ST 1—exp(—K/0) K’ (14)
showing that s grows from J at K=0to 1 at K= . Fig-
ure 2 shows the time development of one oscillator
(w=1) for K =3.5, and compares it to that of an uncou-
pled free running oscillator. Also shown in this figure is
the corresponding value of s=20.745, while the fully
drawn curve in Fig. 3 shows s as a function of K.

We shall discuss the stability of the above solution in
some detail looking at a perturbation on a single oscilla-
tor whose trajectory has been displaced by an
infinitesimal amount 8, while leaving s constant. Using
the definitions of Fig. 1 with the trajectories denoting, re-
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FIG. 2. The time development of a single oscillator with (full
line K =3.5) and without (dashed line) coupling. The value of
the mean-field strength s with coupling is also shown.

spectively, the state of the perturbed and the unperturbed
oscillator, the ratio between the perturbations immediate-
ly before and after the firings is found from Eq. (5) by in-
serting the slopes as calculated from Eq. (3):

ﬁ: w+Ks

_wTARS (15)
8, wt+Ks—K

Because of the damping introduced by the coupling, the
perturbation will decrease in a period by the amount
exp(—KT). Using the equation for T we find that the
perturbation grows in one period with a factor
A=28,/8,exp(—KT)=1. The state is thus marginally
stable.

To further investigate the possible stability of the state
one would have to go to higher order in the stability
analysis. However, numerical simulations show that the
state after a perturbation that displaces a group of oscil-
lators from a certain distribution of, e.g., firing times
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0.70 y
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FIG. 3. The mean-field oscillator strength s (K). Fully drawn
line: identical oscillators (w=1). Dashed line: nonidentical os-
cillators (@=1,A=0.25). No damping.

versus oscillator index will relax back into a distribution
that after a permutation of indices is identical to the orig-
inal distribution. The state is thus apparently stable but
highly degenerate. A more careful study of this problem
using a continuous-density approach (to be published
elsewhere) reveals that the stationary state is indeed mar-
ginally stable.

That a state is marginally stable in a finite volume of
parameter space is surprising. In low-dimensional
dynamical systems marginally stable states are only found
on critical lines separating the stable and the unstable re-
gions, and therefore demands a fine tuning of parameters.
Recently, other systems of coupled oscillators showing
this kind of marginality have been reported [13,17]. The
behavior has been attributed to the generalized time-
reversal symmetry of the underlying equations. In Ref.
[18] the authors succeeded in giving a rigorous proof of
the marginal stability of the stationary state of an infinite
system of phase rotators. They further showed that in
the presence of noise the stationary state becomes linearly
stable. For any finite number of oscillators there are
inevitable fluctuations in the mean field. The effect of
this on the stability properties, however, has not been
resolved. Because of the firings the present system is
much more intricate. So far we have been unable to find
a way to decide whether the ‘“flicker” noise from the
firings of individual oscillators in a finite system destroys
the marginal stability, although we suspect that it does.

B. The synchronized state

The totally synchronized (in phase) state, where all the
oscillators run in unison and therefore has no interaction,
is of course also a solution to the system equations. In
the following we shall show that this state is unstable for
all values of K.

We consider perturbations that divide the population
into two families of N, and N, oscillators, respectively,
where the family N, is supposed to fire an infinitesimal
amount of time before the family N,. From the equa-
tions of motion for the two families we find that the dis-
tance 8 between their trajectories develops with time ac-
cording to the equation 6=—K& between two firing
events. Consequently from Eq. (6) the Lyapunov number
taken over a period becomes

w+akK ex
wtak —K P

(0]

, (16)

where we have used the definition a =N, /N.
The stability limit is given by |A|=1. This defines two
critical values o given by

1 ()
T T Fexp(—K /o) K an
Note that A=1 for all values of « if K =0. A third criti-
cal value a is determined by o +a, K —K =0 (K > ).
When this threshold is crossed the slope of the family N,
becomes negative after the firing of the family N,. This
denotes a superunstable situation. Figure 4 shows for
=1 the dependence on K of o, ; and a,. Because of the
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FIG. 4. The critical values a4, and «a; as a function of K for
identical oscillators without damping. In the case of damping
the critical values move up.

fluctuations there will always be some finite spread in
firing times. When a firing sequence starts, the trajec-
tories of the two families will converge as long as «a is in
the regime above a; and for negative values of K below
a_,;. However, the value of a always has to pass through
a region where |A| > 1. Here the trajectories will diverge,
especially if K > and the critical value a, is passed.
Consequently there will always be a spreading action and
this process seems to go on until a uniform distribution of
firing times is obtained. This picture has been confirmed
on numerical simulations on pools of up to 4097 oscilla-
tors. The state shown in Fig. 2 is indeed the steady-state
solution, and no self-synchronization is present in the
coupled system. Let us remark here that this is the case
even for negative values of the coupling constant K.
However, this is a unique consequence of the linear
coupling. As soon as a nonlinearity is introduced in the
coupling a self-synchronized state jumps into existence
for small K. A perturbative approach would thus not
suffice for proving the existence of the synchronized state.
Depending on the details of the nonlinearity we can in
fact turn a repulsive interaction into an attractive one by
this mechanism reminiscent of what happens in super-
conductivity. More details are presented in Appendix B.

C. Including damping

In this section we shall treat the case of identical oscil-
lators with damping included. Under the assumption of s
constant the calculation for s can again be performed as a
time integral over one period of a single oscillator giving

S—( i)_a)+Ks_ 1

TV TR AT TR 4T (18)
leading to
LT—Ta)—I"s , (19)

again in agreement with Eq. (10). Inserting this in the ex-
pression for the period 7T [Eq. (12)] finally determines s
through an implicit relation:

K+T
w—7TIs

_K4T
o+Ks

exp (20)

Since s obviously depends on K, one effect of the damping
is therefore to make the period T depend on K. In Fig. 5
we have plotted s and 1/7 vs K for the parameter values
o=1and I'=0.5. The asymptotic value of s is again uni-
ty independent of the damping while limg_, 1/T
=w—T.

As before, the state with all oscillators running in un-
ison is a solution to the system equation. The stability of
the state can again be investigated by dividing the pool of
oscillators into two families separated by an infinitesimal
distance. From Fig. 1 we find (in parallel with the treat-
ment without damping) for the Lyapunov number per
period

o+Ka
A T tKa—K exp[ — (K +I)T7] . (21)
With the oscillators synchronized, the coupling term
disappears, and the common period is that for a free sin-
gle oscillator given by

exp(—TT)=1—L . (22)
(0]

Here, too, we find that |A|=1 defines two critical values
g
K+T @

YT K1F(1-T/w)exp(—KT)] K’ 23)
where we have used the relation for the period. For a
third critical value a;,=1+T/K —w/K the state be-
comes superunstable. As seen, the effect of the damping
is to increase the critical values of «, thus rendering the
synchronized state even more unstable. This is so as long
as the damping itself does not eliminate the oscillations.
That the state with s constant is indeed the stable state is
again confirmed through numerical simulations.

0.90

0.80

0.70

I 1 1 1 1 I

0.50 ! : .
0.00 2.00 4.00 6.00 8.00

K

FIG. 5. The mean-field oscillator strength s and the frequen-
cy 1/T vs the coupling constant K for identical oscillators in the
case of damping. The parameters are o =1,I’=0.5.
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V. NONIDENTICAL OSCILLATORS,
NO MODULATION

Already in the simple case without damping a stability
analysis becomes impossible. We shall therefore assume
that the stable state is the state with s constant. This as-
sumption is supported by numerical simulations. Many
different distributions of natural frequencies are of course
possible. We shall show in the following that even the
simple form of uniform distribution on a closed interval
for some subset of oscillators gives rise to oscillator quies-
cence, i.e., the firings stop and the state variable becomes
constant for a quiescent oscillator. The critical value of
the coupling constant K for this to happen is derived.

The equation of motion is now

%;=0,— (K +T)x;+Ks , o,€[6—Ad+A], (24)

with s assumed to be time independent. From this we can
deduce that the spread in individual periods is increased
by the coupling since the same amount Ks is added to all
the natural frequencies but the damping term introduced
by the coupling has more time to work on the slower os-
cillators. However, the average rotation number is in the
case of zero damping independent of the coupling
strength K, being equal to that of a pool of identical oscil-
lators with frequency @. This is clear from Eq. (10) set-
ting I'=0.

Thus quite obviously the coupling does not enforce
self-synchronization upon the oscillators as happens in
the corresponding case of the “phase rotator model” for
an interacting pool of oscillators [10,15]. From the sta-
bility analysis of the case with identical oscillators it is
evident that the important difference lies in the firing ac-
tion.

The fixed point x;* for the ith oscillator is derived by
assuming x; =0, giving x*=(w; +Ks)/(K +T). If for
some reason this value becomes smaller than the thresh-
old T, =1 the oscillator will stop firing; the oscillator is
said to die. This phenomenon is called oscillator quies-
cence. The first to quiesce will be the one with the small-
est natural frequency leading to the following condition
of s:

o—A

X (25)

T
s=1+ X
To find a relation between the coupling constant K and
the spread in natural frequencies we now have to make a
self-consistent calculation of s. However, from the calcu-
lation of the average rotation number above [Eq. (10)] we
have immediately

N & T,
D> ! , @6
ooy | KT
w; +Ks

where & equals either @ — A or I'+ K (1—s), whichever is
larger. The former value should be used if no oscillators
become quiescent. Here we have used Eq. (12) for T, to-

gether with the fact that the rotation number equals zero
for a quiescent oscillator.

Solving this and insertion into Eq. (12) would in princi-
ple allow us to find the resulting distribution of individual
periods.

For N >>1 the above equation can be cast into integral
form. With the substitution y =w+Ks —K —TI we find

o—1TI's _ 1
K+T

_ch)+A—1"—K(1—s) dy
2A Yo-r—k(1—-s) In(y +K+T)—Iny ’

(27)

from which equation s can be derived by numerical in-
tegration. For I'=0 the result is displayed as the dashed
curve in Fig. 3 which shows s vs K for =1 and A=0.25.
For comparison the fully drawn curve shows the corre-
sponding curve for A=0. When the condition Eq. (25)
on s for the first oscillator to quiesce is fulfilled, the upper
limit of the above integral is 2A while the lower is zero.
The critical line K vs A for the first quiescence to occur is
shown in Fig. 6 for center frequency @=1 and I'=0. Ob-
viously the critical line goes to zero at A=1. In the limit
of zero spread in the natural frequencies (A—0) we find a
logarithmic growth in the coupling constant K —@ InA
and as expected s — 1.

Figure 7 shows the results for the distribution of indivi-
dual rotation numbers, R;, versus o; from a numerical
simulation on a pool of 4097 oscillators (parameters
A=0.25,=1, K =0, 2.3, and 3.5; no damping present).
Under these conditions the first oscillator becomes quies-
cent at a K value around 2.5 according to Fig. 6. This
agrees well with the result shown in Fig. 7 where none
have become quiescent for K =2.3, while about one-
seventh of the oscillators have become quiescent for
K =3.5. Note that at the same time the frequency of the
fastest oscillator has increased by approximately 30%.
The distribution found here agrees perfectly with that ob-
tained from the analytical solutions, Eqgs. (27) and (12).
Furthermore, the average rotation number R is found to
be 1 as expected.

In the case of the ““phase rotator model” the oscillators

10.00
K

7.50

REGION OF AMPLITUDE DEATH

5.00

2.50

0.00 L I | ] ) i ]
0.00 0.25 0.50 0.75 1.00

A

FIG. 6. Critical line in K,A space for the first oscillator
quiescence to occur. The parameters are =1, [ =0.
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FIG. 7. Rotation number, R;, for individual oscillators vs w;
with the coupling constant K as a variable parameter. The pa-
rameters are = 1,A=0.25,"=0.

quiesce collectively. This, of course, can happen here
even for zero coupling if the damping is sufficiently high.
However, if this were to happen in the present case for
I'=0, i.e., no damping, Eq. (10) would lead to the trivial
case ®=0 (and A=0). So at minimum one oscillator
would survive which using Eq. (26) leads to the condition

B=— K (28)

N ln 1 J— L

o +A+Ks
Insertion of the condition for the oscillator with the
second highest frequency to quiesce

(K=o+A+Ks—A/N) leads to

NK K
1+—=exp|— |, (29)
A P No ]

which besides the trivial solution K =0 has a solution for
finite K. With N =4097, A=0.25, and @=1, this gives
K =86 000.

VI. IDENTICAL OSCILLATORS WITH MODULATION

We shall proceed by investigating the pool of oscilla-
tors under the influence of an external field keeping the
interaction linear and attractive in the rest of the paper,
i.e., K non-negative. The important question is whether
or not phase locking occurs in the system. If phase lock-
ing is the case we shall go on to investigate the stability of
the phase-locked state (or step as it is often called espe-
cially in the literature on Josephson junctions [19]). The
first case to be considered is that of modulation on the
upper threshold. However, first let us recapitulate some
properties for a single oscillator under the influence of an
external field (for details see, e.g., [20]).

Consider a single oscillator without damping. Modula-
tion can be applied to either the upper or lower level or
both. A special case of the latter is constituted by the

modulation on the two levels being in phase and having
the same amplitude. In this case the system can be
transformed into having the modulation applied to the
intrinsic frequency instead.

In the former cases the application of the modulation
results in frequency pulling of the oscillator by the exter-
nal field. If the amplitude is below a certain critical value
the resulting state is either phase locked at a rational fre-
quency ratio or quasiperiodic. The critical value occurs
when the maximum slope of the modulation becomes
identical to the slope of the oscillator state variable at the
firing time (without damping this is identical to the in-
trinsic frequency w). Above the critical value either the
solution itself (modulation on lower level) or the time-
reversed solution (modulation on upper level) can have
multiple crossings with the modulated level. In (w,a)
space the collection of critical points constitute a critical
line of complete phase lock (a complete devil’s staircase)
having a (complementary) fractal dimension of 0.87. For
a sinusoidal modulation the critical line is w =2ma, where
a is the amplitude of the modulation. In the case of
modulation on the upper level a shadowing effect sets in,
forbidding firing in certain time intervals. The result is
complete phase lock above the critical line. In the case of
modulation on the lower level we get overlapping of the
phase-locked regions resulting in hysteresis and chaos
above the critical line. In this case an instability will also
occur inside the phase-locked regions giving rise to a
Feigenbaum bifurcation route to chaos. A stability
analysis analogous to that presented above shows that the
limits of the phase-locked regions are found by requiring
that the Lyapunov number equal 1, while the instability
inside the phase-locked region occurs when the
Lyapunov number becomes smaller than — 1.

If the modulation is on the frequency no phase-locked
states exist due to the slopes involved in the calculation
of the Lyapunov number being identical before and after
the firing event. However, if damping is introduced this
symmetry is broken, and phase locking appears. The
behavior is parallel to that of the case with modulation
on the upper level since the shadowing effect prohibits
firing in the time intervals which would introduce chaos
into the system. A critical line again occurs at the value
of a above which the time-reverse solution can have mul-
tiple crossings, i.e., where X =x =0 for x =1. This re-
sults in the condition 0 =T+ (47*+T?)!"2q,

A. Modulation on the upper level

In what follows we shall ignore the intrinsic damping
setting '=0. The equation of motion is then given by
Eq. (1) with w;=w and A(z)=0. Furthermore, we
choose a sinusoidal modulation, i.e., Tmp =1+a sin(27t),
while T, =0. Since all oscillators are assumed to be
identical, the obvious solution is the synchronized state.
We shall therefore investigate the stability of this state.

For the sake of simplicity we shall assume that for
K =0, o is in the range of phase lock on the 1/Q step
(i.e., T =Q). This requires that there exists a time ¢’ such
that the following condition is fulfilled:

Qow=1++asin27t’' . (30)
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From this the limits of the step for K =0 are
l1—a=Qw=1+a below the critical line given by
o=2ma. As described above, beyond criticality a shadow-
ing effect prohibits firings on part of the upper threshold.
Only the lower edge of the step survives while the upper
edge is bent inwards (see Ref. [16] for details). For
® = 21ra we have complete phase lock.

To investigate the stability of the phase-locked solution
when the coupling is turned on, we look at the same kind
of perturbation as previously dividing the pool of oscilla-
tors into two families. From Eq. (6) we find immediately

©+aKT,(1')

M o (@K —K) Ty (1) —27a cos(2mr) <P KO
_ o(1+aKQ)
o[1+(a—1KQ]+27[a’—(Qw—1)*]""?
Xexp(—KQ) , (31)

where we have used the condition equation (30) for being
on the first step.

As in the case without modulation there exists a criti-
cal value ¢; (A=1) below which the perturbation grows
with time, i.e., the locked state becomes unstable, and a
critical value a, where the state becomes superunstable.
However, if the amplitude of the modulation is
sufficiently large a; becomes zero for a finite K and a
stable regime exists. Setting a; =0 we find for the critical
value a, of the amplitude for this to happen:

2
a%:(Qa,—Uz—l—%[QK —1+exp(—QK)]*. (32)
T

For K =0, a, is seen to coincide with the limits of the
step (see above). Likewise we find the critical value a; by
setting a, =0:

2
a2=(Qo—12+-"=[QK —1T, (33)
4

with the further condition QK >1. For large values of
the coupling constant K the two critical amplitudes con-
verge together. Both are functions of the natural fre-
quency w. For w=1/Q, a,; passes the critical line
w=2ma for QK slightly below 2, while a, passes for
QK =2. Displayed in Fig. 8 is the stability region of
some of the major 1/Q steps (upper curve a;) and the
limit for the superunstable regime (middle curve ay)
versus o for K =0.85. The lines starting at the o axis
show the limits of the stable steps for K =0. Also shown
is the critical line @=2ma. Thus the step sizes shrink
when the coupling is turned on, reminiscent of what hap-
pens in the case of globally coupled damped pendulums
with random intrinsic pinning under the influence of an
external force with modulation [20]. Presumably this
means that the critical line for complete phase lock disap-
pears abruptly when the coupling is turned on, since due
to the shadow effect steps can only touch but not overlap.
However, we have not yet been able to establish the de-
tailed structure. Numerical simulations show that the
solution in the unstable regime of the step is incoherent
with s modulated by the external frequency. Thus firing

0.20

0.10

0.05

0.00 1 1 L L L J
0.25 0.50 0.75 1.00 1.25

w

FIG. 8. Critical lines a4, and a, inside some 1/Q steps
(Q=1,2,3) for K =0.85. Modulation on the upper level. From
above, the order of the critical lines is a;, a,, and a_;. Also
shown is the critical line w=2ma for K =0. Identical oscillators
with ' =0.

times are spread out over all times although their distri-
bution is modulated.

Let us finally look into whether the inside of the
phase-locked region is stable above the critical value a;.
Setting A=—1 and a=0, results in a condition that is
trivially fulfilled for K less than K _; determined by the
relation QK _; =1-+exp(—QK _;). For larger values of K
we find @ <a_; as a condition for the first bifurcation,
where a _, is given by

2
az_l=(Qw—1)2+4£2~[g1<—1—exp(—QK)]2. 34)
w

This critical value is shown as the lower curve in Fig. 8.
As seen a;>a,>a_, for all values of K=K _,, even
though they converge for K — . The system is there-
fore stable towards bifurcations for all values of the cou-
pling constant K.

B. Modulation on the lower level

As above, the equation of motion is given by Eq. (1)
with w;=w and A4(t)=T=0. Furthermore, with the
modulation on the lower level we have T\,,=1 and
T =a sin(27t). For the same reasons as above the obvi-
ous solution is the synchronized state. We shall therefore
investigate the stability of this state.

As before we assume that for K =0 we would be phase
locked on a 1/Q step (i.e., T=¢). This requires that
there exists a time ¢’ such that the following condition is
fulfilled:

Qw=1—asin27t’ . (35)

Again the limits on the step for K =0 are
1—a<Qw<1+a below the critical line given by
w=2ma. As described above, beyond criticality the steps
overlap and hysteresis and chaos is found.

The Lyapunov number is given by
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_ o(1+aKQ)—2w[a’—(Qw—1)*]'"?
o[1+(a—1)KQ]

A exp(—QK) ,

(36)

where we have used the condition equation (35) for being
on the 1/Q step. From this we immediately observe that
the critical value a;,=(QK —1)/K is independent of a
and the system thus is superunstable for QK > 1. In this
case the modulation is not able to overcome the superin-
stability present already in the unperturbed system.

Also in this case a critical value a, exists (A=1) below
which the perturbation grows with time, i.e., the locked
state becomes unstable. Again a critical value for the am-
plitude a; can be found where a; becomes zero for a
finite K and a stable regime exists. Setting a;=0 we find
for the critical value of the amplitude:

2
a%=(Qw—1)2+—:’2[1+(QK—1)exp(QK)]2. (37)
T

Likewise we find the critical value a_, by setting
a_;=0, where a_; is determined by the condition
A=—1:

2
az_,=(Qw—1)2+——:)2[1—(QK—1)exp(QK)]2. (38)
T

In this case the instability inside the step occurs for
a=a_,;. Crossing this critical line we would therefore
expect the synchronized state to bifurcate. As seen,
a_j;=a; for QK =1. For QK =1 (where a,=0) the two
curves become identical. From this we would expect the
critical line to be pushed up since no shadow effects exists
and steps therefore are allowed to overlap eventually in
contrast to the case of modulation on the upper level.
Presumably bifurcations and chaos will be present when
the critical line is crossed as for a single oscillator. How-
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FIG. 9. Critical lines a1, and a; inside some 1/Q steps
(Q =1,2,3) for K =0.48. Modulation on the lower level. From
above, the order of the critical lines is a_; and @, on the Q =1
and 2 steps, while the order is reversed on the Q =3 step. How-
ever, this step is in the region KQ > 1 and is therefore unstable
for all values of a. Also shown is the critical line w=2ma for
K =0. Identical oscillators with I'=0.

ever, at least no 1/Q steps will be stable below Q <1/K,
and in fact we believe no steps at all will be present in this
regime. In Fig. 9 we show the critical lines for some of
the major 1/Q steps (K =0.48) together with the step
sizes with zero coupling in a (w,a) plot. The conjectures
above have been checked by numerical simulations in a
few cases and found correct.

C. Modulation on frequency

As we have seen without modulation, self-
synchronization does not take place in the coupled sys-
tem. Instead the coupling throws the system into a state
where firing times are evenly distributed and a damping
term is present. For a single isolated oscillator it is known
that such a damping term is sufficient for creating phase
lock to an external signal modulating the natural frequen-
cy. A natural question to ask is therefore whether the
damping introduced by the coupling is enough to secure
phase lock in the present system. However, since all os-
cillators are identical, phase lock would force them into
running in unison and the damping, and consequently the
phase lock, would disappear. Thus the state with damp-
ing would reappear. This apparent paradox is cleared up
by looking at Eq. (10) for the average rotation number.
Without damping (i.e., I'=0) we see from this that the
average rotation number is equal to the natural frequency
® independent of the modulation. Thus the solution for
the coupled system must be one where s is modulated in
such a way as to absorb the effect of the external modula-
tion. However, this could still force the system into a
state of self-synchronization even though no phase lock
takes place.

To investigate this possibility we assume that all oscil-
lators run in unison and that o is irrational. The state is
then quasiperiodic with a uniform distribution of firing
times t* mod 1. In order to examine the stability one
therefore has to consider the time-averaged Lyapunov
number. The period T is given by
oT —(a/2mw)cos(2nT)+a /27=1. As usual the
Lyapunov number is found from Eq. (6) giving for the
average Lyapunov number per period:

5
<Mt)>:<8_2> exp(—KT)
1

=< w+asin(2mt)+Ka
w+asin2mt)+Ka—K

If [{A)|>1 for @a=0, the state is always unstable. A
necessary and sufficient condition for stability is therefore

> exp(—KT) . (39)

K
1+ —KT)=1. 40
< w+tasin(27t)— K > exp( ) 40)
The time-averaging integral can be performed and a nu-
merical evaluation shows that the above statement is al-
ways false. Thus the synchronized state is always unsta-
ble.

If the denominator in Eq. (39) becomes negative the
state becomes superunstable. The condition for this to
happen is a=1—[w+a sin(27¢)] /K. Since w is assumed
irrational every firing time modulo 1 is visited. The insta-
bility therefore sets in for the maximum value possible,
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ie.,, a;=1—(w—a)/K. The critical line a;=0 is then
given by —a +ow=K.

VII. NONIDENTICAL OSCILLATORS
WITH MODULATION

We shall now turn to the system of nonidentical oscil-
lators with modulation applied, first treating the case of
modulation on the upper level.

A. Modulation on the upper level

The equations of motion are given by Eq. (1) with
A (t)=0. Furthermore, we shall ignore damping in this
section. In the absence of coupling all oscillators can be
phase locked to the same step if the spread in frequency is
sufficiently small. If the spread is larger the rotation
numbers of the individual oscillators will for any given
values of a and A lie on a devil’s staircase which for some
oscillators may be incomplete, and for others complete if
the critical line is crossed.

The same picture is found in the case of finite coupling,
K0, together with the spreading of individual frequen-
cies and oscillator quiescence already observed for
nonidentical oscillators in the absence of modulation. In
Fig. 10 we show the individual rotation number R,
versus the natural frequency w; for K =0 from a numeri-
cal simulation on a pool of 1025 oscillators with A=0.75,
@®=1, and a =0.13. A simulation on the same system for
K =2.5 is displayed in Fig. 11. As seen oscillator quies-
cence and frequency spreading is observed as expected to-
gether with a devil’s staircase, even though in fact more
oscillators are now phase locked than before the interac-
tion is turned on. A critical point is still found dividing
the devil’s staircase in a complete and an incomplete sec-
tion, but the oscillators are pushed across the critical line
deeper inside the regime of complete phase lock. Howev-
er, the question is whether the state of the system as a
whole can be phase locked. Deemed from extensive nu-
merical simulations, the answer to this question is
affirmative. The coupled system can indeed be in a
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FIG. 10. R; vs w; for K =0, modulation on the upper level,
no damping. The parameters are =1, A=0.75, a =0.13.
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FIG. 11. R; vs w; for K =2.5, modulation on the upper level,
no damping. The parameters as in preceding figure.

phase-locked state with a rational average rotation num-
ber provided a single step is sufficiently large to accom-
modate all oscillators. However, the simulations also
show that the firing times are spread out so no two oscil-
lators fire simultaneously. The oscillators therefore can-
not be said to be synchronized.

An interesting question is whether there is a lower lim-
it to phase lock for the averaged system even if all oscilla-
tors could be accommodated on a single step. However,
the lower limit found in the case of identical oscillators
may be strictly connected with the degeneracy present
there. The existence of a critical line is also connected to
this question. If a lower limit exists one would expect the
critical line to disappear for the average rotation number,
and the step structure for the system as a whole will
probably consist of isolated phase-locked islands inter-
spersed with quasiperiodic states. We have not been able
to resolve these questions so far.

With respect to modulation on the lower level the situ-
ation is much the same as above as long as the critical
line w=2ma is not crossed by any individual oscillator.
This case therefore will not be treated separately. If the
critical line is crossed, hysteresis and chaos occur for the
individual oscillators. Whether this means a complete
breakdown for the possibilities of phase lock for the aver-
aged system is not known.

B. Modulation on frequency
The equation of motion is now
X;=w; —(K+I')x;+Ks+asin(27t) ,
o0, €E[—A+A]. 41

As in the case of identical oscillators we know that if the
intrinsic damping is ignored, due to the relation equation
(10) for the average rotation number no synchronization
to the external modulation will take place for the system
as a whole. For K =0 the individual oscillators will not
phase lock. We shall therefore treat the system without
intrinsic damping as the most interesting case.
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The system has to some extent been investigated by nu-
merical simulations. A simple result for K somewhat
above 1 seems to be that the mean field s oscillates out of
phase with the external modulation, i.e.,
s(t)=b —s, sin(27¢), where Ksy <a. This result has been
checked on a pool of 2049 oscillators for many different
combinations of K, A, @, and a.

We have run simulations for finite values of the cou-
pling as well as without coupling on this system. As ex-
pected there is no sign of phase lock with the coupling
turned off. A simulation of 2049 oscillators with K =3,
®=1, A=0.3, and a =0.5 is displayed in Fig. 12. From
the results for @ =0 in Sec. V we would expect a spread in
individual rotation numbers and oscillator quiescence to
occur. This does happen. However, most surprisingly the
individual oscillators seem to phase lock to the external
modulation even though we know that the average rota-
tion number is independent of the modulation. Further-
more, a devil’s staircase seems to exist as when the modu-
lation is on the levels. To investigate this phenomenon
further, we shall look at the Lyapunov number for a sin-
gle oscillator.

Following the usual analysis we find for the Lyapunov
exponent related to the Lyapunov number by A =exp(A):

A,=—K+ lim
t—>w l —1

< S 1 w; +Ks(t;)+a sin(2wt;)
2 K T Ks(1,) +asin(2ms,) |’
J

(42)

where ¢; is the time for the jth firing. In Fig. 13 we show
the numerical result for the Lyapunov exponent corre-
sponding to Fig. 12 versus the natural frequency. As
seen, there is a regime where the individual oscillators are
completely phase locked below the first step and a regime
where the individual oscillators are in either phase-locked
or quasiperiodic states starting at w; =1.08. Thus we find
a devil’s staircase with a critical point for the distribution
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FIG. 12. R; vs w; for K =3, modulation on the current, no
damping. The parameters are ®=1, A=0.3, @ =0.5.
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FIG. 13. Lyapunov exponent referring to Fig. 12. The ambi-
guity found inside the phase-locked steps is due to the finite
values of the time steps and number of oscillators.

of individual rotation numbers. If we look at the
behavior of the Lyapunov exponent for a collection of os-
cillators phase locked to the same step we observe that no
two oscillators have the same exponent. The meaning of
this becomes more clear if we plot the distribution of first
firing times 7; after a given time ¢’ versus natural frequen-
cy as shown in Fig. 14 corresponding to the simulation
shown in Fig. 12. Again the distribution is such that no
two oscillators phase locked on the same step fire simul-
taneously. Thus even though the oscillators having the
same rotation number are all phase locked to the modula-
tion, they cannot be said to be locked to each other.
There is, of course, an ambiguity built into this construc-
tion since for instance on a P /Q step there are Q different
periods of the external force that a single oscillator phase
locked on such a step can fire on. Thus the first firing
times on such a step will fall in Q distinct groups. For an
irrational (quasiperiodic orbit) rotation number a con-
tinuous range of firing times will be observed.

The critical point that separates the completely phase-
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FIG. 14. Distribution of first firing times (parameters as in
Fig. 12).
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FIG. 15. Time development of the slowest oscillator and of
the mean-field oscillator strength s (parameters as in Fig. 12).
The lowest curve shows the external field for ease of compar-
ison.

locked regime from the regime with quasiperiodic and
phase-locked states can be determined from the observa-
tion that the mean field s is out of phase with the modula-
tion. The condition that specifies which oscillator is at
the critical point is X¥; =x,=0 for x;=1. Inserting the
above-mentioned equation for s in the equation for x; and
taking the minimum we find

Cl)f:K +a—K (b +S())
=K +a —Ks,,, , (43)

for the critical natural frequency. The value of s_,, can
be taken to be approximately 0.81 from Fig. 15, where we
have shown the time development for the slowest oscilla-
tor and the mean field s corresponding to the simulation
presented in Fig. 12. The resulting value for the critical
natural frequency corresponds well with that obtained
from the calculation of the Lyapunov exponent, showing
that the mechanism at work is indeed the shadowing
effect as for a single isolated oscillator [16].

VIII. CONCLUSION

We have treated a large system of globally and homo-
geneously connected relaxation oscillators, where the
coupling is assumed linear and continuous. This allows
for a mean-field approach, which is the main reason for
considering a linear coupling. One very important ques-
tion when discussing large pools of interacting oscillators
is whether self-synchronization take place in the system.
Under the specified circumstances the answer is shown to
be negative. However, we show that for identical oscilla-
tors this is entirely due to the linear form of the coupling.
If the coupling is nonlinear, under the right cir-
cumstances even a repulsive interaction can be
transformed into an effective attractive interaction, due
to the instantaneous resetting. We find that synchroniza-

tion can also take place for nonidentical oscillators but
more work needs to be done on this problem.

The state found to be the preferred state is the station-
ary or incoherent state having an even distribution of
firing times. The stability of this state is difficult to study
whether by analytical means or through numerical simu-
lations. However, simulations with small time steps and
with initial conditions close to the stationary state show
only a slow decay of perturbations. Furthermore, the
simulations show some evidence for the time scale of the
decay to increase with the number of oscillators. Analyt-
ically the system is hard to attack partly due to the
discontinuous firings partly due to the high degeneracy
encountered when the oscillators are identical. However,
our investigation leads us to the conclusion that the sta-
tionary state is marginally stable.

For nonidentical oscillators the introduction of the
coupling results in amplitude quiescence. However, in
contrast to the case of limit cycle oscillators no collective
amplitude quiescence takes place, but instead an increase
in the distribution of individual frequencies. We have
determined the critical line for the first oscillator to
quiesce. Also in this case the stationary state seems to be
the preferred state.

The system has furthermore been investigated in the
presence of an external field. One important result for
identical oscillators is that the phase-locked regions for
the average system shrinks and one has to go to finite
values of the amplitude of the external field before phase
locking is achieved. Below this level our investigation in-
dicates that the stationary state as usual is the preferred
state. For modulation on the upper level our investiga-
tions indicate that the critical line encountered for a sin-
gle oscillator for transition to complete phase lock disap-
pears abruptly, when the field is turned on. For modula-
tion on the lower level, the critical line for transition to
hysteresis and chaos is pushed to higher values of the
field amplitude but still seems to exist. More work is
needed to give clear answers concerning this.

When the oscillators are nonidentical we find that for
modulation on the upper level the entire system can be
phase locked provided that all individual oscillators can
be accommodated on the same step. If not, the rotation
numbers of the individual oscillators constitute a devil’s
staircase, part of which can be complete, part of which
can be incomplete if the critical line is crossed. A
surprising result is that even when the entire system is
phase locked to the external field no two oscillators fire at
the same time. The individual oscillators thus in a sense
cannot be said to be locked together. Another surprise is
encountered for modulation on the frequency. Just as for
the single oscillator the entire system is unaffected by the
modulation. However, the individual oscillators are due
to the coupling forced into a state where their individual
rotation numbers constitute a devil’s staircase. Again no
two oscillators fire at the same time.

APPENDIX A: NUMERICAL METHODS

For identical oscillators the firing events cause a prob-
lem for the numerical integration. In general, a distur-
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bance will converge between firings and discontinuously
diverge at the firings. If the firings simply are implement-
ed by resetting x when the upper level is exceeded oscilla-
tors firing in the same time step will be synchronized for-
ever. This nucleation creates groups of oscillators that
eventually may merge into the fully synchronized state.
Even when an interpolation scheme is used the contribu-
tion from the firings to the stability exponent will always
by underestimated in the simulation. When studying the
stability of the stationary state the problem is serious. If
this is marginally stable, as we claim, it will always ap-
pear unstable in the simulations. Choosing the time step
small enough allowing for many time steps between
firings, the state will appear metastable. A given pertur-
bation will decay and the stationary state exists for some
time before breaking up into clusters. It is worth noting
the resemblance between pulse coupling and the spurious
consequence of a finite time step. Arguments analogous
to those above suggest that when both pulse coupling and
continuous coupling is present, the long-time behavior is
controlled by the pulse coupling, and the stable state is
fully synchronized.

The numerical integration has in most cases been per-
formed with an Euler algorithm. The size of the pool was
from 129 to 4097 oscillators. The large pools were main-
ly used to get good resolution of the step structures.
Time steps were chosen between 1/128 and 1/4096 with
the large steps sufficient when the oscillators had distri-
buted frequencies. We note that for a given time step the
time for a simulation increases linearly with the number
of oscillators N when using Eq. (3) compared to N2 when
using Eq. (1).

A few of the simulations were checked with a fourth-
order Runge-Kutta algorithm. No significant discrepan-
cy was noted compared to the Euler algorithm.

APPENDIX B: NONLINEAR COUPLING

In this Appendix we shall briefly treat the case of intro-
ducing a nonlinearity in the coupling. We shall only con-
sider the simplest case of identical oscillators without
damping and without modulation. The equation of
motion can then be written as

. K X
xi=m+W21g(xj—x,-) , (B1)
i=
where the coupling function g (x) is assumed continuous
and odd, i.e., g(x)=—g(—x) and g(0)=0. Further-
more, g(1)=1 and g’'(0) >0, so that the interaction is at-
tractive if K > 0.

We shall demonstrate in the following that the intro-
duction of a nonlinearity into the coupling abruptly
brings about self-synchronization. To calculate the
Lyapunov number for the synchronized state we as usual
divide the pool into two families. Referring to Eq. (6) we
first have to calculate the slopes 4, and & ,:

h1=w+Tg(—1)=w—K(l—a) )
(B2)

KN,
h2=w+—N—g(l)=w+Ka .
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FIG. 16. The critical values a4, and «a; as function of K for
identical oscillators («0=1) without damping but with a non-
linear coupling with g'(0)=1.5. A synchronized state appears
for positive K values smaller than approximately 0.6.

We also need to calculate the change in the perturbation
in between firings. Using that x; —x; <<1 everywhere in
between firing events we find for the time development of
the perturbation:

.. _kK X
X=X = > lglxj—x)—g(x;—x,)]
j=1

~—Kg'(0)(x, —x,) . (B3)

Combining these results the Lyapunov number becomes

h,
A:T exp[ —KTg’'(0)]
1

wo+Ka

=—————¢x Kg'(0)
o—K(l—a) P

(0]

(B4)

The stability criterion |A| <1 defines as usual two critical

1.00 |
Ay (o8]
a | 1
0.75 !
\
I |
0.50 ~ |
L | as
!
0.25 |- &1
8} |
r |
0.00 L 1 1 I | 1 |
—4.00 -2.00 0.00 2.00 4.00

K

FIG. 17. The critical values a4, and «a, as function of K for
identical oscillators (w=1) without damping but with a non-
linear coupling with g’(0)=0.75. A synchronized state appears
for negative K values greater than approximately —0.75.
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values a given by

1

ay % , (BS)

1Fexp —f—g'(O)

which evidently depends on the nature of the nonlineari-
ty. The critical value a; for the superinstability is given
by a,=1—w/K. In Figs. 16 and 17 we have plotted the
critical values as function of K for g’(0)>1 and g'(0) < 1,
respectively.

If a;=0 for a finite value of K the self-synchronized

state will be stable. This leads to the following relation:

__Kg'(0)
1)

1— LG exp . (B6)
(]

If g'(0) > 1, this equation has a solution K, in the interval
10, @[ so that the synchronized state is stable for every K
in the interval ]0,K_.[. Even more surprising, if g’(0) <1,
then the equation has a solution K, in ]— ,0[ so that
the synchronized state is stable for every K in ]K_,0[.
Thus the introduction of the nonlinearity abruptly brings
about self-synchronization.
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